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Abstract. The problem of minimizing a (non-convex) quadratic function over the simplex (the
standard quadratic optimization problem) has an exact convex reformulation as a copositive
programming problem. In this paper we show how to approximate the optimal solution by
approximating the cone of copositive matrices via systems of linear inequalities, and, more refined,
linear matrix inequalities (LMI’s). In particular, we show that our approach leads to a polynomial-
time approximation scheme for the standard quadratic optimzation problem. This is an improve-
ment on the previous complexity result by Nesterov who showed that a 2 /3-approximation is
always possible. Numerical examples from various applications are provided to illustrate our
approach.
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1. Introduction

A standard quadratic optimization problem (standard QP) consists of finding global
minimizers of a quadratic form over the standard simplex, i.e., we consider global
optimization problems of the form

¡:p* 5min x Qx (1)
x[D

where Q is an arbitrary symmetric n 3 n matrix; a ¡ denotes transposition; and D is
nthe standard simplex in the n-dimensional Euclidean R ,

n ¡
D5 hx[R : e x5 1j ,1

¡ n n nwhere e5 [1, . . . , 1] [R and R denotes the non-negative orthant in R . To1

avoid trivial cases, we assume throughout the paper that the objective is not constant
¡over D, which means that hQ, E j are linearly independent where E 5 ee is then n

¡ ¡ 2n 3 n matrix consisting entirely of unit entries, so that x E x5 (e x) 5 1 on D. Wen

need some further notation: as usual, I denotes the n 3 n identity matrix, andn
n ne [R its ith column (i.e., the ith standard basis vector in R ).i

For a review on standard QPs and its applications, see [3]. We only mention here
that this problem is known to be NP-hard, and contains the max-clique problem in
graphs as a special case. Note that the minimizers of (1) remain the same if Q is
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replaced with Q 1gE where g is an arbitrary constant. So without loss ofn

generality assume henceforth that all entries of Q are non-negative. Furthermore, the
¡ ¡question of finding minimizers of a general quadratic function x Ax1 2c x over D

¡ ¡can be homogenized considering the rank-two update Q 5 A1 ec 1 ce in (1)
which has the same objective values on D.

In this paper we will show how to derive approximation guarantees for this
problem via semidefinite programming (SDP). The main idea is as follows: we can
give an exact reformulation of the standard quadratic optimization problem as a
copositive programming problem, and subsequently approximate the copositive cone
using either linear inequality systems, yielding LP relaxations; or, more refined,
systems of linear matrix inequalities (LMIs), yielding an SDP formulation. This
methodology is due to De Klerk and Pasechnik [5] and Parrilo [14] (see also [15]).
We will show that we obtain a polynomial-time e-approximation for problem (1) for
each e . 0 in this way. Such an approximation is known as a polynomial-time
approximation scheme (PTAS). This improves on a result by Nesterov [10], who
showed that a 2 /3-approximation is always possible.

Both SDP and copositive programming problems are examples of conic
programming problems, and we begin by reviewing these concepts.

1.1. PRELIMINARIES; CONIC PROGRAMMING

We define the following convex cones:
• The n 3 n symmetric matrices:

n3n ¡6 5 hX [R , X 5X j;n

• the n 3 n symmetric positive semidefinite matrices:
1 ¡ n6 5 hX [6 , y Xy> 0 for all y[R j;n n

• the n 3 n symmetric copositive matrices:
¡ n# 5 hX [6 , y Xy> 0 for all y[R j;n n 1

• the n 3 n symmetric completely positive matrices:
k ¡ n*# 5 hx 5o y y , y [R (i 5 1, . . . , k)j;n i51 i i i 1

• the n 3 n symmetrical nonnegative matrices:
1 5 hX [6 , X > 0 (i, j 5 1, . . . , n)j;n n ij

• the n 3 n symmetric doubly nonnegative matrices:
1$ 56 >1 .n n n

:We consider the usual inner product kX, Yl 5Tr(XY) on 6 and recall that then

completely positive cone is the dual of the copositive cone, and that the nonnegative
and semidefinite cones are seld-dual with respect to this inner product. Furthermore,

1*the dual cone of $ is $ 56 11 , a cone which is contained in # and whichn n n n n

will play an important role in the relaxations to follow.
For a given cone _ and its dual cone _* we define the primal and dual pair of

conic linear programs:
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:(P) p* 5 inf hkC, Xl : kA , Xl5 b (i 5 1, . . . , m), X [_ jX i i
(2)

m
¡ m:(D) d* 5 sup b y : C 2O y A [_*, y[R .H Jy i i

i51

1If _ 56 we refer to semidefinite programming, if _ 51 to linear programming,n n

and if _ 5# to copositive programming.n

The well-known conic duality theorem, see, e.g., [18], gives the duality relations
between (P) and (D).

THEOREM 1.1 (Conic duality theorem). If there exists an interior feasible solution
0X [ int(_ ) of (P), and a feasible solution of (D) then p*5 d* and the supremum

0 m m 0in (D) is attained. Similarly, if there exist y [R with C 2o y A [ int(_*)i51 i i

and a feasible solution of (P), then p*5 d* and the infimum in (P) is attained.

1As is well known [11], optimization over the cones 6 and 1 can be done inn n

polynomial-time (to compute an e-optimal solution), but copositive programming is
NP-hard, as we will see in the next section.

1.2. STANDARD QUADRATIC OPTIMIZATION VIA COPOSITIVE PROGRAMMING

In [4] it is shown that we can reformulate problem (1) as the copositive
programming problem

*:p* 5minhkQ, Xl : kE , Xl5 1, X [# j . (3)n n

Problem (3) is called a copositive program because of its dual formulation

:p* 5maxhl : Q 2lE [# , l[Rj (4)n n

(note that the optimal values of both (3) and (4) are attained and equal to Theorem
1.1; see [4]). The reformulation makes it clear that copositive programming is not
tractable (see, e.g., [19, 4]). In fact, even the problem of determining whether a
matrix is not copositive is NP-complete [9].

In [4], some ideas from interior point methods for semidefinite programming are
adapted for the copositive programming case, but convergence cannot be proved.
The absence of a computable self-concordant barrier for this cone basically
precludes the application of interior point methods to copositive programming.

A solution to this problem was recently proposed by Parrilo [14], who showed
that one can approximate the copositive cone to a given accuracy by a sufficiently
large set of linear matrix inequalities. In other words, each copositive programming
problem can be approximated to a given accuracy by a sufficiently large SDP. Of
course, the size of the SDP can be exponential in the size of the copositive program.

In the next section we will review the approach of Parrilo, and subsequently work
out the implications for the copositive formulation of the general quadratic
optimization problem by applying the approach of De Klerk and Pasechnik [5]. The
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basic idea is to replace the copositive cone in (4) by an approximation: either a
polyhedral cone or a cone defined by linear matrix inequalities. In this way we
obtain a tractable approximation problem.

2. Approximations of the copositive cone
n nSince any y[R can be written as y5 x + x for some x[R where + indicates the1

componentwise (Hadamard) product, we can represent the copositivity requirement
for an (n 3 n) symmetric matrix M as

n
¡ 2 2 n:P(x) 5 (x + x) M(x + x)5 O M x x > 0 for all x[R . (5)ij i j

i, j51

There are many possible representations of the polynomial P as a homogeneous
polynomial of degree four, if we allow for nonzero coefficients of terms like
(x x )(x x ) for i ± j ± k ± l.i j k l

In particular, if we represent P(x) via

¡ ˜˜ ˜P(x)5 x Mx (6)

2 2 ¡ ˜˜where x5 [x , . . . , x , x x , x x , . . . , x x ] , and M is a symmetric matrix of1 n 1 2 1 3 n21 n
1 ˜]order n 1 n(n 2 1), then M is not uniquely determined. The non-uniqueness2

follows from the identities:
2 2 2(x x ) 5 (x )(x )i j i j

2(x x )(x x )5 (x )(x x )i j i k i j k

(x x )(x x )5 (x x )(x x )5 (x x )(x x )i j k l i k j l i l j k

˜It is easy to see that the possible choices for M define an affine space (see below for
a closer description of that space).

2.1. SUM-OF-SQUARES DECOMPOSITIONS

Condition (5) will certainly hold if the polynomial P can be written as a sum of
squares (s.o.s., in short), i.e., if

t
2P(x)5O f (x)i

i51

for some polynomial functions f (x) (i 5 1, . . . , t). A sum of squares decompositioni
˜is possible if and only if a representation of P(x) exists where M in (6) is positive

semidefinite. We will show this for any homogeneous polynomial of degree 2r
nbelow, but introduce some convenient notation beforehand: for any x[R and any

nmulti-index m[N (with N 5 h0, 1, 2, . . .j) we define umu5o m and denote by0 0 i i
m m nix 5p x the corresponding monomial of degree umu. Also, denote by I (s)5i i

nhm[N : umu5 sj the set of all possible exponents of monomials of degree s (there0
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n nn 1 s 2 1are d 5 ( ) of them) and, as usual, 2I (s)5 h2m : m[ I (s)j. Finally, given as
n mset of multi-indices I and a vector x[R , we define [x ] as the vector withm[I

m micomponents x 5p x for each m[ I.i i

¯LEMMA 2.1. If P(x) is a homogeneous polynomial of degree 2s in n variables
¡x5 [x , . . . , x ] , which has a representation1 n

l
2P̄(x)5O f (x)i

i51

for some polynomials f (x) (i 5 1, . . . , l), then there are polynomials h (x) which arei i
t 2¯homogeneous of degree s for all i such that P(x)5o h (x) with 1< t < l.i51 i

¯Further, P has a s.o.s. representation as above if and only if there is a symmetric
1˜positive-semidefinite matrix d 3 d matrix M [6 such thatd

¡ ˜¯ ˜ ˜P(x)5 x Mx (7)

k dn 1 s 2 1 ˜where d 5 ( ) and x5 [x ] [R .ns k[I (s)

Proof. It is easy to see that the degree of f is at most s for each i: if we assume toi

the contrary that f has maximal degree of all f and its degree exceeds s, then thej i

square of its leading term which appears in the s.o.s. will never cancel out, since
there can be no monomials of the same degree with negative coefficients.

We can therefore decompose each f as f 5 h 1 g where h is homogeneous ofi i i i i

degree s (or zero, but without loss of generality we assume that this happens only if
t , i < l, including the possibility of t 5 l), and the degree of g is less than s. Nowi

l 2 t 2 lo f (x) 5 h(x)1 g(x) with h(x)5o h (x) and g(x)5o g (x)[2h (x)1i51 i i51 i i51 i i
¯g (x)], so that g has degree less than 2s while h, as P itself, is homogeneous ofi

¯ ¯degree 2s. Thus P 5 h 1 g implies g 5 0 and P 5 h. Next note that any homoge-
¡ d ¡ ˜˜ ˜ ˜neous h can be written as h (x)5 a x for some a [R , so that h(x)5 x Mx withi i i i

t ¡ 1˜ ˜M 5o a a [6 . The converse is obvious via spectral decomposition of M. hi51 i i d

˜Next let us characterize all the matrices M [6 which allow for a representationd
¡ ˜¯ ¯˜ ˜P(x)5 x Mx for a given homogeneous polynomial P.

2m¯LEMMA 2.2. Let P(x)5o A x be a homogeneous polynomial of degreenm[I (s) m
¡ d˜ ˜2s in n variables x5 [x , . . . , x ] and define M [6 and x[R as in Lemma 2.1.1 n d

¡ ˜¯ ˜ ˜Then P(x)5 x Mx if and only if

n˜O M 5 A for all m [ I (s) , (8)j,k m
n 2(j,k)[[I (s)] :j1k52m

n n˜O M 5 0 for all n [ I (2s)\2I (s) . (9)j,k
n 2(j,k)[[I (s)] :j1k5n
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j k j1k˜ ˜Proof. Observe that M x x 5M x . The assertion now follows by equatingj,k j,k
¡ 2m˜˜ ˜the corresponding coefficients of the polynomials x Mx and o A x . hnm[I (s) m

Parrilo showed [14] that P(x) in (5) allows a sum of squares decomposition if and
1only if M [6 11 , which is a well-known sufficient condition for copositivity.n n

For completeness of presentation, we give a new proof here, which follows easily
from the preceding lemmas.

0 1 *:Let us define the cone _ 5 6 11 5$ , the cone dual dual to that of alln n n n

doubly nonnegative matrices.

¡THEOREM 2.1 (Parrilo [14]). P(x)5 (x + x) M(x + x) allows for a polynomial s.o.s.
0 1if and only if M [_ , i.e., if and only if M 5 S 1T for matrices S [6 andn n

T [1 .n

¡:Proof. Let M [6 and P(x) 5 (x + x) M(x + x). In this case, the degree 2s of Pn
n 1 1equals four, so that s 5 2, and hence d 5 ( ). Obviously, A 5M while2 2e iii

A 5 2M if 1< i , j < n, by symmetry of M. Therefore Lemma 2.2 yieldse 1e iji j

˜ ˜ ˜ ˜M 5M while M 1M 5 2M if 1< i , j < n, since also M is2e ,2e ii e 1e ,e 1e 2e ,2e iji i i j i j i j
˜assumed to be symmetric. Note that we may and do assume that M is positive-

1 ˜]semidefinite by Lemma 2.1. Now put T 5 M if i ± j while T 5 0, all i.ij e 1e ,e 1e ii2 i j i j
˜Then T [1 because diagonal elements of M cannot be negative. Further, S 5M 2n

˜T satisfies S 5M for all i, j, which means that S is a principal submatrix of theij 2e ,2ei j
1˜positive-semidefinite matrix M. Hence also S [6 , which shows the necessity partn

¡of the assertion. To establish sufficiency, observe that (x + x) S(x + x) is, by spectral
2 ¡decomposition of S, even a s.o.s. in the variables z 5 x while (x + x) T(x + x)5i i] 2 ¡o [ T x x ] is obviously a s.o.s. Hence (x + x) M(x + x) is, as the sum of two s.o.s.i, j ij i jœ

decompositions, itself a s.o.s. h

Higher order sufficient conditions can be derived by considering the polynomial:

n r n n r
(r) 2 2 2 2P (x)5P(x) O x 5 O M x x O x , (10)S D S Dk ij i j k

k51 i, j51 k51

(r)and asking when P (x) has a sum of squares decomposition. It is clear from
Lemma 2.1 that the set of matrices M which satisfy this condition forms a convex
cone.

rDEFINITION 2.1 (De Klerk and Pasechnik [5]). The convex cone _ consists ofn
(r)the matrices for which P (x) in (10) allows a polynomial sum of squares

decomposition.

r r11Obviously, these cones are contained in each other: _ #_ for all r. Thisn n

follows from
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(r11) 2 (r) 2P (x)5O x P (x)5O [ f (x)x ] .k i k
k i,k

By explicitly calculating the coefficients A (M) of the homogeneous polynomialm
(r)P (x) of degree 2(r 1 2) and summarizing the above auxiliary results, we arrive at a

rcharacterization of _ which has not appeared in the literature before.n

n 1 r 1 1THEOREM 2.2. Let n, r [N and d 5 ( ). Further, abbreviate m(i, j)5m2r 1 2
ne 2 e for any m[R and introduce the multinomial coefficientsi j

nc(m)5 umu!YP (m )! , if m[N ,i 0
i

(11)
n nc(m)5 0 , if m[R \N .0

For a symmetric matrix M [6 , definen

A (M)5O c(m(i, j))M . (12)m ij
i, j

rThen M [_ if and only if there is a symmetric positive-semidefinite d 3 d matrixn
1M̃ [6 such thatd

n˜O M 5 A (M) for all m[ I (r 1 2) ,j,k m
n 2( j,k)[[I (r12)] :j1k52m

(13)
n n˜O M 5 0 for all n[ I (2r 1 4)\2I (r 1 2) .j,k

n 2( j,k)[[I (r12)] :j1k5n

Proof. By the multinomial law,

n n r
(r) 2 2 2P ; O M x x O xS Dij i j k

i, j51 k51

n
2 2 2k

5 O M x x O c(k)xij i j
ni, j51 k[I (r)

(14)
n

2k12e 12ei j5 O O c(k)M xij
n i, jk[I (r)

n
2m

5 O O c(m(i, j))M x .F Gij
n i, j51m[I (r12)

The last identity follows by setting m5 k1 e 1 e . Hence A (M) as given by (12)i j m
(r)are the coefficients of P , and the assertions follow by observing s 5 r 1 2 with the

help of Lemma 2.1 and Lemma 2.2. h

The following auxiliary result simplifies the expressions A (M) considerably.m

LEMMA 2.3. Let M be an arbitrary n 3 n matrix and denote by diag M 5 [M ] [ii i
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n
R the vector obtained by extracting the diagonal elements of M. If A (M) ism

defined as in (12), then

c(m) ¡ ¡ n]]]A (M)5 [m Mm2m diag M] for all m[ I (s) , s [N . (15)m s(s2 1)

Proof. Note that by definition, c(m(i, j))5 0 if m m 5 0 in case i ± j while eveni j

c(m(i, i))5 0 if m , 2 so that nonzero coefficients of M occur only for some (i, j)i ij

pairs depending on m. Hence straightforward calculation shows, using s 5 umu,

A (M)5O c(m(i, j))Mm ij
i, j

c(m)m mc(m)m (m 2 1) i ji i
]]]]] ]]]5O M 1O Mii ijs(s 2 1) s(s 2 1)i i±j

c(m) 2]]]5 O m M 1O m m M 2O m Mi ii i j ij i iiF Gs(s 2 1) i i±j i

which exactly corresponds to (15). h

¡ ¡ 2 2Observe that for M 5E , we have, from m E m5 (e m) 5 umu , thusn n

c(m) 2 n]]]A (E )5 [s 2 s]5 c(m) for all m[ I (s), s [N . (16)m n s(s 2 1)

1Parrilo [14] showed that M [_ if the following system of linear matrixn

inequalities has a solution.

(i ) 1M 2M [6 , i 5 1, . . . , n , (17)n

(i )M 5 0 , i 5 1, . . . , n , (18)ii

( j ) (i )M 1 2M 5 0 , i ± j , (19)ii ij

(i ) ( j ) (k)M 1M 1M > 0 , i , j , k , (20)jk ik ij

(i )where M [6 for i 5 1, . . . , n.n
1The converse is also true: if M [_ then the system of LMI’s (17)–(20) has an

solution; this was used by De Klerk and Pasechnik [5] without giving a rigorous
proof. We will now give a complete proof, by using our new characterizations of the

r n 1 2cones _ in Theorem 2.2 for r 5 1. Note that d 5 ( ) in this case. We will use a3n

shorthand notation where ijk as a subscript indicates the multi-index e 1 e 1 e [i j k
nI (3).

1THEOREM 2.3. M [_ if and only if there are n symmetric n 3 n matricesn
(i )M [6 for i 5 1, . . . , n such that the system of LMI’s (17)–(20) is satisfied.n
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1 1˜Proof. First assume that M [_ . By Theorem 2.2 there exists a M [6 satisfyingn d

(13) such that
n n

(1) 2 2 2 ¡ ˜˜ ˜P (x);O M x x O x 5 x Mx ,S Dij i j k
i, j k51

k d n 1 2˜where x1 [x ] [R , and d 5 ( ).n 3k[I (3)

By (15), we have A (M)5M while A (M)5 2M 1M and A (M)5iii ii iij ij ii ijk

2[M 1M 1M ] if 1< i , k < n. Similarly, the left-hand sides of (13) read inij ik jk

case n5 2m

M̃ , if n5 6e ,iii,iii i

˜ ˜M 1 2M , if n5 4e 1 2e , i , j , (21)iij,iij iii,ijj i j

˜ ˜ ˜ ˜M 1 2[M 1M 1M ] , if n5 2(e 1 e 1 e ) , i , j , k .ijk,ijk iij, jkk iik, jjk ijj,ikk i j k

(i ) (i ) 1˜Now put S 5M for all triples (ijk). Then S [6 since it is a principaljk ijj,ikk n
(i ) (i )˜submatrix of the positive-semidefinite matrix M. Hence setting M 5M 2 S we

see that condition (17) is satisfied. It remains to show that (18)–(20) hold. Now

(i ) (i ) ˜M 5M 2 S 5 A (M)2M 5 0ii ii ii iii iii,iii

and similarly

( j ) (i ) ( j ) (i )M 1 2M 5M 1 2M 2 S 2 2Sii ij ii ij ii ij

˜ ˜5 A (M)2M 2 2M 5 0 ,iij iij,iij iii,ijj

whereas

(i ) ( j ) (k) (i ) ( j ) (k)M 1M 1M 5M 1M 1M 2 S 2 S 2 Sjk ik ij ij ik jk jk ik ij

1 ˜ ˜ ˜]5 A (M)2M 2M 2Mijk ijj,ikk iij, jkk iik, jjk2
1 ˜]5 M > 0 ,ijk,ijk2

˜because the diagonal entries of M cannot be negative. Thus we have constructed a
solution to the system of LMI’s (17)–(20).

Conversely, assume that a solution to (17)–(20) is given. Observe that
n

(1) 2 ¡P (x)5O x (x + x) M(x + x)i
i51

n n
2 ¡ (i ) 2 ¡ (i )

5O x (x + x) (M 2M (x + x)1O x (x + x) (M )(x + x) . (22)i i
i51 i51

(i ) 1The first sum is obviously a s.o.s., since M 2M [6 for every i. The secondn

sum can likewise be written as a s.o.s. because of
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2 ¡ (i ) (i ) 2 2 2O x (x + x) M (x + x)5O M x x xi jk i j k
i i, j,k

(i ) 6 ( j ) (i ) 4 2
5O M x 1O (M 1 2M )x xii i ii ij i j

i i±j

(i ) ( j ) (k) 2 2 2
1 O (2M 1 2M 1 2M )x x xjk ik ij i j k

i,j,k

]] ]]]](i ) 3 2 ( j ) (i ) 2 2
5O ( M x ) 1O ( M 1 2M x x )œ ii i ii ij i jœ

i i±j

]]]]]]](i ) ( j ) (k) 2
1 O ( 2[M 1M 1M ]x x x ) , (23)jk ik ij i j kœ

i,j,k

where we have used the non-negativity condition (20) to obtain the last equality.
Note that the first two sums of the last expression vanish due to (18) and (19). Thus

(1)P (x) is represented as a s.o.s. h

By closer inspection of the preceding proof we see that the condition (17) can be
relaxed, to arrive at a (seemingly) less restrictive system of LMI’s, namely:

(i ) 1M 2M [6 11 , i 5 1, . . . , n , (24)n n

(i )M 5 0 , i 5 1, . . . , n , (25)ii

(i ) ( j )M 1 2M 5 0 , i ± j , (26)jj ij

(i ) ( j ) (k)M 1M 1M > 0 , i , j , k . (27)jk ik ij

(i ) 1 0Indeed, the first sum in (22) is still a s.o.s., since M 2M [6 11 5_ forn n n

every i, and because of Theorem 2.1. Hence (24)–(27) constitute an alternative
1characterization of _ , which in the next section will turn out to be quite insightful.n

There we will also specify an (apparently) even more relaxed characterization of
1_ , see (40)–(43) in Subsection 2.2 below. With slightly more effort, one couldn

rderive similar systems of LMIs for the cones _ if r > 2. However, d then increasesn
r12so rapidly with n (recall that d 52(n )) that the resulting problems become too

large for current SDP solvers—even for small values of n.
We therefore change our perspective in the next subsection, to arrive at a series

of LP approximations of the copositive cone. These approximations are weaker than
the SDP ones, but can be solved more easily.

2.2. LP RELAXATIONS YIELDED BY NONNEGATIVITY

(r)We start with a simple observation: If the polynomial P (x) has only nonnegative
coefficients, then it is already allows a sum-of-squares decomposition. This
motivates the following definition.

rDEFINITION 2.2 (De Klerk and Pasechnik [5]). The convex cone # consists ofn
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(r)the matrices for which P (x) in (10) has no negative coefficients. Hence for any r,
r rwe have # #_ .n n

r r11Again, we obviously have # # # for all r. We can immediately derive an n
rpolyhedral representation of the cones # ; this characterization has not appeared inn

the literature.

nTHEOREM 2.4. For any m[R , define Diag m as the n 3 n diagonal matrix
containing m as its diagonal, i.e., satisfying diag(Diag m)5m. Then for all r [N0

and n [N,
r ¡ ¡ n# 5 hM [6 : m Mm2m diag M > 0 for all m[ I (r 1 2)jn n

¡ n
5 hM [6 : kmm 2Diag m, Ml> 0 for all m[ I (r 1 2)j .n

Proof. Follows from (14) in Theorem 2.2 and Lemma 2.3, with the help of the basic
¡ ¡ ¡relations m Mm5 kmm , Ml and m diag M 5 kDiag m, Ml. h

0 n 1Note that # 51 since I (2)5 he 1 e : i, jj while M [# if and only if M [6n n i j n n

with

M > 0 , i 5 1, . . . , n , (28)ii

M 1 2M > 0 , i ± j , (29)ii ij

M 1M 1M > 0 , i , j , k . (30)jk ik ij

This follows from Theorem 2.4 by the same arguments as in Theorem 2.3. We can
1also establish an alternative characterization of # similar to that in Theorem 2.3:n

1THEOREM 2.5. M [# and only if and only if there are n symmetric n 3 nn
(i )matrices M [6 for i 5 1, . . . , n such that the following system of linearn

inequalities has a solution:
(i )M 2M [1 , i 5 1, . . . , n , (31)n

(i )M 5 0 , i 5 1, . . . , n , (32)ii

( j ) (i )M 1 2M 5 0 , i ± j , (33)ii ij

(i ) ( j ) (k)M 1M 1M > 0 , i , j , k . (34)jk ik ij

1 (i )Proof. Suppose that M [# and define N as follows:n jk

(i )N 5M , if i 5 j 5 k ,jk ii

1(i ) ]N 5 M 1M , if i 5 j ± k or i 5 k ± j , (35)jk ii ij2
(i )N 5 0 , else .jk
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(i ) (i ) (i )Then N [6 and because of (28) and (29) we get N [1 . Further, M 5M 2n n
(i ) (i )N [6 satisfy M 5 0 and alson ii

1( j ) (i ) ]F GM 1 2M 5M 2 01 2 M 2 M 2M 5 0 .ii ij ii ij ii ij2
(i )Finally, (30) implies (34) because M 5M if hi, j, kj contains three distinctjk jk

(i )elements due to the definition of N . The converse follows as in the proof of
Theorem 2.3, without taking square roots in (23).

1By comparing (31)–(34) to (24)–(27) we see that merely 6 11 in (24) hasn n
1 1been shrunk to 1 in (31). This reflects the fact that # ,_ .n n n

Further, the two equalities (32) and (33) can be replaced with inequalities,
1without changing the characterization: M [# if and only if there are n symmetricn

(i )n 3 n matrices M [6 for i 5 1, . . . , n such that the following system of linearn

inequalities has a solution:
(i )M 2M [1 , i 5 1, . . . , n , (36)n

(i )M > 0 , i 5 1, . . . , n , (37)ii

( j ) (i )M 1 2M > 0 , i ± j , (38)ii ij

(i ) ( j ) (k)M 1M 1M > 0 , i , j , k . (39)jk ik ij

1Similarly, also M [_ if and only if there are n symmetric n 3 n matricesn
(i )M [6 for i 5 1, . . . , n such that the following system of LMIs has a solution:n

(i ) 1M 2M [6 11 , i 5 1, . . . , n , (40)n n

(i )M > 0 , i 5 1, . . . , n , (41)ii

(i ) ( j )M 1 2M > 0 , i ± j , (42)jj ij

(i ) ( j ) (k)M 1M 1M > 0 , i , j , k . (43)jk ik ij

Indeed, we may use non-negativity via (41), (42) and (43) in (23) to obtain the
desired s.o.s. decomposition there, and an analogous argument without taking square
roots applies to establish sufficiency of (36)–(39).

rEvery strictly copositive matrix M lies in some cone # for r sufficiently large;n

´this follows from a famous theorem of Polya [16] (see also Powers and Reznick
[17]). In summary, we have the following theorem.

1THEOREM 2.6 (De Klerk and Pasechnik [5]). Let M [⁄ 6 11 be strictlyn n

copositive. Then there are integers r (M) and r (M) with 1< r (M)< r (M),1_ # _ #

`, such that

1 0 1 r6 11 5_ ,_ , ? ? ?,_ ]Mn n n n n
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r (M )21_for all r > r (M) while M [⁄ _ , and similarly_

0 1 r1 5# ,# , ? ? ?# ]Mn n n n

r (M )21#for all r > r (M) while M [⁄ # .# n

rThe first part of the theorem (concerning the cones _ ) already follows fromn

arguments by Parrilo [14].

3. Approximation results

In this section we consider families of LP and SDP approximations to p*5
¡minhz Qz : z[Dj, and prove a bound on the quality of these approximations.

3.1. LP-BASED APPROXIMATIONS

Let us define:

(r) rp 5minhkQ, Xl : kE , Xl5 1, X [ (# )*j , (44)# n n

for r 5 0, 1, . . . which has dual formulation

(r) rp 5maxhl : Q 2lE [# , l[Rj . (45)# n n

Note that problem (45) is a relaxation of problem (4) where the copositive cone is
r (r)approximated by # . It therefore follows that p < p* for all r. We now provide ann #

(r)alternative representation of p . This representation uses the following rational grid#

which approximates the standard simplex:

1 n n]]D(r)5 I (r 1 2)5 hy[D : (r 1 2)y[N j . (46)0r 1 2

A naive approximation of problem (1) would be

¡:p 5minhy Qy : y[D(r)j> p* . (47)D(r)

(r)The next theorem shows that there is a close link between p and the naive#
(r)approximation p . In particular, one can obtain p in a similar way as the naiveD(r) #

approximation p is obtained, i.e., by only doing function evaluations at points onD(r)

the grid D(r).

THEOREM 3.1. For any r [N consider the rational discretization D(r) of the0

standard simplex D from (46). If Q is an arbitrary symmetric n 3 n matrix and
1
]q 5 diag Q, thenr r 1 2

r 1 2(r) ¡ ¡]]p 5 minhy Qy2 q y : y[D(r)j . (48)# rr 1 1
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rProof. First we use the representation of # from Theorem 2.4, putting M 5Q 2n

lE , and observing that from (15) and (16),n

A (M)5 A (Q)2lA (E )m m m n

1 ¡ ¡]]]]5 c(m) (m Qm2m diag Q)2l .F G(r 1 2)(r 1 1)

Then by (45) we have

1(r) ¡ ¡ n]]]]p 5min (m Qm2m diag Q) : m[ I (r 1 2) ,H J# (r 1 2)(r 1 1)

1
]which gives (48) by putting y5 m[D(r). hr 1 2

Observe that, compared to the naive approximation p , we subtract a linearD(r)
¡ ¡correction term q y from the original objective y Qy to get closer to p*, but wer

(r)have to compensate with a factor (r 1 2) /(r 1 1)5 112(1 /r). 1, because p#

always exceeds p*. Given the last result, it is straightforward to derive the following
approximation guarantee.

¡:¯THEOREM 3.2. Let p 5max x Qx. One hasx[D

1(r) ]] ¯p*2 p < (p 2 p*)# r 1 1

as well as

1
]] ¯p 2 p*< (p 2 p*) .D(r) r 1 2

Proof. By Theorem 3.1 we have

r 1 2(r) ¡ ¡]]p 5 minhy Qy2 q y : y[D(r)j# rr 1 1
r 1 2 1 T]] ]]> p*2 max (diag Q) yS Dr 1 1 r 1 2y[D(r)

r 1 2 1
]] ]]5 Sp*2 max Q Diir 1 1 r 1 2 i

r 1 2 1
]] ]] ¯S D> p*2 pr 1 1 r 1 2

1
]] ¯5 p*1 ( p*2 p ) .r 1 1

The first result follows. The second relation is derived in a similar way: by Theorem
3.1 we have

r 1 1 1¡ (r)]] ]]min y Qy< p 1 max Q# iir 1 2 r 1 2 iy[D(r)

r 1 1 1
]] ]] ¯< p*1 p ,r 1 2 r 1 2
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which implies the second statement. h

3.2. SDP-BASED APPROXIMATIONS

(r)Similarly as in the definition of p , we can define SDP-based approximations to p*#
r rusing the cones _ instead of # , namely:n n

(r) rp 5minhkQ, Xl : kE , Xl5 1, X [ (_ )*j , (49)_ n n

for r 5 0, 1, . . . . The dual problem of (49) is

rmaxhl : Q 2lE [_ , l[Rj . (50)n n

It may not immediately be clear that the optimal values in (49) and (50) are attained
and equal. Hence we prove the following result.

THEOREM 3.3. The problem pair (49) and (50) have the same optimal value,
(r)namely p , and both problems attain this optimal value. In particular,_

(r) rp 5maxhl : Q 2lE [_ , l[Rj . (51)_ n n

Proof. In order to invoke Theorem 1.1, we have to show that there is a matrix X in
the relative interior of the feasible region of problem (49), and that there is a

rfeasible solution l[R of (50) such that Q 2lE is in the interior of _ . Ton n

establish the latter property, simply take l521 which defines a matrix Q 1E inn
1 0the interior of 1 16 5_ . Indeed, we assumed right from the start that Q hasn n n

no negative entries, so the same holds true for any sufficiently small perturbation of
0 rQ 1E . Hence this perturbation lies also in 1 ,_ ,_ . Consequently, Q 1En n n n n

rlies in the interior of _ for all r 5 0, 1, . . . . We proceed to establish strictn
1
]]feasibility of the matrix X 5 (nI 1E ) which clearly satisfies kE , Xl5 1.2 n n nn 1 n ]ŒConsider the symmetric square-root factorization W5 X of X, which is given by

]] ] ]]Œ Œ ŒW5 1/( n 1 1)I 1 ( 22 1) /(n n 1 1)E (it is straightforward to verify thatn n
2W 5X). Obviously, all entries of W are strictly positive, hence the same holds true

]Œfor the symmetric square-root factorization U of any sufficiently small perturba-
]Œtion U of X, by continuity of the map U ∞ U at the positive-definite matrix X. But

] rŒ *since U has no negative entries, we conclude that U [# , (_ )*. Therefore Xn n
rlies in the interior of (_ )* for all r 5 0, 1, . . . , and Theorem 1.1 establishes then

desired strong duality assertion. h

(r) (r) (r)COROLLARY 3.1. For p as in (51), we have p > p for all r 5 0, 1, . . . , and_ _ #

therefore

1(r) ]] ¯p*2 p < (p 2 p*) ._ r 1 1
r rProof. The first inequality follows from # ,_ , and the second from the first andn n

from Theorem 3.2. h
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4. Comparison with known approximation results

4.1. AN IMPLEMENTABLE POLYNOMIAL-TIME APPROXIMATION SCHEME

Consider the generic optimization problem:

:f* 5maxh f(x) : x[ Sj ,

for some nonempty, bounded convex set S, and let

:f 5minh f(x) : x[ Sj .*

DEFINITION 4.1 (see, e.g., [12]). A value c is said to approximate f with*
relative accuracy m [ [0, 1] if

uc 2f u<m(f*2f ) .* *

The approximation is called implementable if c >f .*

Note that c is an implementable approximation if and only if c 5 f(x) for some
x[ S.

DEFINITION 4.2 (see, e.g., [13]). If a class of optimization problems allows an
implementable, polynomial-time m-approximation for each m . 0, then we say that
this problem class allows a polynomial-time approximation scheme (PTAS).

It is known from Bellare and Rogaway [1] that (even in a weaker sense) there is no
polynomial-time m-approximation of the optimal value of the problem

¡minhx Qx : Bx5 b, o< x< ej (52)

1
]for some m [ (0, ), unless P 5NP.3

Using semidefinite programming techniques, the problem

1¡ ]H Jmin x Qx : Bx5 e, o< x< e2

can be approximated in polynomial-time with the relative accuracy (122(1 /
log(n))), see [12] and the references therein.

Note the standard quadratic optimization problem (1) is a special case of this
¡problem where B 5 (1 /2)e . Nesterov [10] has shown that problem (1) allows a

polynomial-time, implementable 2.3-approximation. Our result in Theorem 3.2
improves on this result, since it can be restated as: p is a polynomial-time,D(r)

implementable, (1 /(r 1 2))-approximation of p*. In other words, for any given e . 0
we obtain an implementable polynomial-time e-approximation for problem (1), i.e.,
a PTAS.

An intuitive explanation why standard QPs admit a PTAS is that the (relative)
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volume of the standard simplex decreases exponentially fast with increasing n,
contrasting with the general case (52) treated by Bellare and Rogaway.

4.2. SPECIAL CASE: THE MAXIMUM STABLE SET PROBLEM

Let G 5 (V, E) be a simple graph with uV u5 n, and let a(G) denote its stability
number (cardinality of the largest stable set). It is known from Motzkin-Straus [8]
(see also De Klerk and Pasechnik [5]) that

1 ¡]]5min x (A1 I )x , (53)na(G) x[D

where A is the adjacency matrix of G. Note that this is a special case of the standard
quadratic optimization problem (1), where Q 5 A1 I .n

The stability number a(G) cannot be approximated in polynomial-time to within
1 / 22e 12ea factor uV u for any e . 0 unless P 5NP, or within a factor uV u for any e . 0

unless NP 5 ZPP [7]. The complexity result in Theorem 3.2 guarantees that we
obtain a m-approximation of 1 /a(G) in polynomial-time for each m . 0. This does
not contradict the above-mentioned in-approximability results—a m-approximation
of 1 /a(G) for a fixed m [ (0, 1) can yield an arbitrarily bad approximation of a(G)
(if a(G) is much larger than 1/m).

(r) (r) (r)THEOREM 4.1. Define a 5 1/p where p is defined in (44). Assume without# #
(r)loss of generality that a > 2 (i.e., assume G is not a complete graph). Then

(r) 2a 5a(G) if and only if r >a(G) 2 1 . (54)
(r) (r) 1

]Proof. To abbreviate, put s 5a(G). The assumption a > 2 means that p < .# 2

Now we apply Theorem 3.2, to arrive at

1
]121 1 s

] ]] ]]2 < . (55)(r)s r 1 1a

(r)Isolating a in (55) we can rewrite this inequality in equivalent form:

2s 2 s(r) ]]]a 2 s < .r 1 22 s
(r) 2 (r) 2Hence we find that a 2 s , 1 if r . s 2 2. In other words, a 5 s if r > s 2 1.

To show the converse, consider an independent set S of cardinality s. First suppose
that r 1 25 st for some integer t, and put y5 1/(r 1 2)[o te ][D(r). Theni[S i

¡ ¡straightforward calculations show y Qy2 q y5 (t 2 1) /(r 1 2). Thus Theorem 3.1r

entails

t 2 1 (r)]]> p . (56)#r 1 1
(r) (r) (r)Now, if a 1 s, then p 5 1/a . 1/(s 1 1), so that (56) gives (s 1 1)(t 2 1).#
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2r 1 15 st 2 1, yielding t > s 1 1 or r 1 2> s 1 s. If, on the other hand, s does not
divide r 1 2, then there are unique integers t, p such that r 1 25 st 1 p with

(r)1< p < s 2 1. By the monotonicity of the approximation, a 5 s implies
(s(t11))a 5 s, which, as shown above, gives t 1 1> s 1 1. This establishes r 1 25

2 2st 1 p > s 1 p or r > s 2 1. h

A slightly weaker version of the sufficiency part in (54) has been proven by De
2 (r)Klerk and Pasechnik [5]: if r >a(G) , then a 5a(G). Further, setting t 5 1 in

(56) and exploiting monotonicity again, we conclude that for any r <a(G)2 2, the
(r) (r)LP-approximation a of a(G) is necessarily trivial in the sense that p 5 0. Thus,#

(r)p . 0 implies that r >a(G)2 1. Also this last result was already shown by De#

Klerk and Pasechnik [5]. This inequality, read the other way round, can be seen as
an instant upper bound for the stability number a(G).

5. Examples

Here we give some examples for problems of various origin.

EXAMPLE 5.1. Consider an instance of the standard quadratic optimization
problem (1), where the matrix Q is given by:

1 0 1 1 0
0 1 0 1 1

Q 5 1 0 1 0 1 .3 41 1 0 1 0
0 1 1 0 1

This example corresponds to computation of the largest stable set in a pentagon (see
(0) (1) 1

]Section 4.2 and [5]). We have p 5 0, p 5 . 0, giving the instant upper bound# # 3

a(G)< 2 which in this case is already exact. Passing to the SDP relaxation, we get
](0) (1) (1)1 1Œ ] ]p 5 1/ 5¯ 0.44721 and finally p 5 p*5 . The proof that p 5 requires_ _ _2 2

the observation that the matrix

1 21 1 1 21
21 1 21 1 11 1

] ]Q 2 E 5 1 21 1 21 1n2 2 3 41 1 21 1 21
21 1 1 21 1

1 0 1is known to be in _ (but it is not in _ 56 1N ); for a proof, see [14].n n n n

EXAMPLE 5.2. Consider an instance of the standard quadratic optimization
problem (1), where the matrix Q is given by:
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1 0 0 0 0 0 1 1 1 1 1 1
0 1 0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 1 0 1 0 1 1 1
0 0 1 1 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1
0 1 1 0 0 1 1 1 1 0 0 1Q 5 .1 0 0 1 1 1 1 0 0 1 1 0 
1 0 1 0 1 1 0 1 1 0 1 0
1 1 0 1 0 1 0 1 1 1 0 0 
1 1 1 0 1 0 1 0 1 1 0 0
1 1 1 1 0 0 1 1 0 0 1 0 1 1 1 1 1 1 0 0 0 0 0 1

This example corresponds to computation of the largest stable set in the complement
1
]of the graph of an icosahedron (see Section 4.2 and [5]). Here p*5 while3

(1) (1)p ¯ 0.309 but the LP approximation yields the trivial lower bound: p 5 0, since_ #
(1)1<a(G)2 2. This example shows that—even though the approximation p is_

(1)much more expensive to compute than p (see Section 6)—it can yield a much#

better lower bound on p*. This example—first considered in [5]—is the smallest
(1)problem we know where the p approximation to p* is not exact. It remains an_

(1)open problem to find the smallest value of n where the p approximation to p* is_

not exact.

EXAMPLE 5.3. This example is from a mathematical model in population genetics
[21], where, among others, the following matrix 410A is considered:

14 15 16 0 0
15 14 12.5 22.5 15

Q 5 16 12.5 10 26.5 16 .3 40 22.5 26.5 0 0
0 15 16 0 14

¡ ¯and the objective is to maximize x Qx subject to x[D. There are five different
1
]local solutions to this problem. The globally optimal value here is 16 which3

¡1 1 1
] ] ]corresponds to x5 [0, , , , 0] . After changing to a minimization problem of the3 3 3

form (1) with a nonnegative coefficient matrix, we obtain the upper bound 21 for the
(1)optimal value via computation of p , while the approximation via computation of#

(1)p is exact._

EXAMPLE 5.4. This example deals with portfolio optimization and is taken from
Berkelaar et al. [2]. Here, x[D corresponds to a portfolio: x is the fraction of youri

¡ ¯capital to be invested in investment i. Given a portfolio x[D there is a risk x Qx
associated with the portfolio which should be minimized, and an expected return
¡r x to be maximized. An example from [2] has data:
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0.82 20.23 0.155 20.013 20.314 1.78
20.23 0.484 0.346 0.197 0.592 0.37

Q̄ 5 0.155 0.346 0.298 0.143 0.419 and r5 0.237 .3 4 3 420.013 0.197 0.143 0.172 0.362 0.315
20.314 0.592 0.419 0.362 0.916 0.49

¯(note that the matrix Q is not positive semidefinite). We can formulate this
(multi-objective) problem in the form (1) as follows:

¡ ¡ 2¯min[x Qx2 c(r x) ] ,
x[e

for some parameter c . 0 measuring risk-aversion; this problem is now of the form
¡ˆ ¯ ˆ(1) if we set Q 5 Q 2 crr . To avoid negative entries, we replace Q with

ˆ ˆQ 5 Q 1gE , where g 5 0.4012 is the maximal entry of 2Q. For this Q andn
(1) (1)c 5 0.1, we have p ¯ 0.4839 and p ¯ 0.3015. Since x5 [0.37, 0.26, 0, 0.37,_ #

¡0] [D yields the objective value 0.4839, this suggests that the SDP relaxation is
exact.

6. Numerical results
(1)We first compare the LP approximation p of p* with the stronger approximation#

(1)p ._

To this end, we generated 1000 instances of (1) with n 5 10, and where the
matrices Q are symmetric with entries uniformly distributed in [0, 1].

(1) (1)In Figure 1 we show a histogram with the ‘distribution’ of the ratios p : p# _
3
]for the 1000 test problems. Note that in about of the cases the ratio is (close to)4

unity. This shows that the LP-based approximations are comparable to the SDP ones
(1)in this sense. However, the computation of p is much cheaper than that of#

(1)p —in Table 1 some typical solution times are given for growing values of n. In_

all cases the computer used was a Pentium II (450 MHz). The LP and SDP solver
was SeDuMi [20] by Jos Sturm running under Matlab 5.3.

The next set of experiments we performed was to approximate the stability
(1) (1)number of random graphs by computing the p and p approximations to the_ #

optimal value of problem (53). For this purpose we generated 20 graphs on 12
vertices to have stability number 6. The edges outside the maximal stable set were
generated at random with the probability of including an edge between two given

(1)1
]vertices outside the maximal stable set being . In all cases the p approaching_2

(1)was exact while the p approximation gave the trivial zero lower bound (see the#

last remark of Section 4.2).
This indicates that Example 5.2 is quite special—it is difficult to find a graph on

(1)12 vertices where p does not give the stability number._

7. Conclusions

We have suggested a novel approach to approximating the optimal value of the
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(1) (1)Figure 1. Histogram showing the distribution of the ratio p : p approximation values# _

for 1000 random instances of (1) with n 5 10.

standard quadratic optimization problem (1)—the problem (1) is first rewritten as a
copositive programming problem, and subsequently the copositive cone is approxi-
mated by using systems of linear or linear matrix inequalities. The resulting
approximations are therefore LPs or SDPs, depending on which approximation
scheme is used. Higher order approximations are also possible, where the resulting
LPs and SDPs become larger, but the approximation is also provably better. In
particular, we have quantified the quality of the approximation as a function of the
order of approximation (Theorem 3.2). In particular, we have shown that our
approximation is a polynomial-time approximation scheme (PTAS) of the standard
quadratic optimization problem (1). Thus we have improved on the previously best
known approximation result due to Nesterov [10].

Table 1. Typical CPU times for solving the respective LP and SDP relaxations for growing
n

(1) (1)n CPU time for p (s) CPU time for p (s)# _

10 0.27 2.86
15 0.88 69.7
20 1.92 80.1
25 4.12 not run
30 6.86 not run
35 11.2 not run
40 26.5 not run
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Moreover, we have presented numerical evidence showing the quality of the
approximations.
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